---

Xref: helios.physics.utoronto.ca sci.physics:82634 sci.physics.particle:1484 alt.sci.physics.new-theories:6759 news.answers:28742 sci.answers:1565 alt.answers:4352 Path: csa5.lbl.gov!sichase From: sichase@csa2.lbl.gov (SCOTT I CHASE) Newsgroups: sci.physics,sci.physics.particle,alt.sci.physics.new-theories,news.answers,sci.answers,alt.answers Subject: Sci.Physics Frequently Asked Questions (1/4) - Administrivia Followup-To: sci.physics Date: 6 Sep 1994 13:32 PST Organization: Lawrence Berkeley Laboratory - Berkeley, CA, USA Lines: 1466 Sender: sichase@csa5.lbl.gov (SCOTT I CHASE) Approved: news-answers-request@MIT.Edu Distribution: world Expires: Sat, 1 October 1994 00:00:00 GMT Message-ID: <6SEP199413321371@csa5.lbl.gov> Reply-To: sichase@csa2.lbl.gov NNTP-Posting-Host: csa5.lbl.gov Summary: This posting contains a list of Frequently Asked Questions (and their answers) about physics, and should be read by anyone who wishes to post to the sci.physics.* newsgroups. Keywords: Sci.physics FAQ Administrivia Reference News-Software: VAX/VMS VNEWS 1.50 Archive-name: physics-faq/part1 Last-modified: 28-JUL-1994 Editor's Note: Sorry for the delay. Work is proceeding on several new articles, but there is nothing new this month, due to my life. -Scott -------------------------------------------------------------------------------- FREQUENTLY ASKED QUESTIONS ON SCI.PHYSICS - Part 1/4 -------------------------------------------------------------------------------- This Frequently Asked Questions List is posted monthly, on or near the first of the month, to the USENET newsgroups sci.physics.research, sci.physics, sci.physics.particle, and alt.sci.physics.new-theories in an attempt to provide good answers to frequently asked questions and other reference material which is worth preserving. If you have corrections or answers to other frequently asked questions that you would like included in this posting, send E-mail to sichase@csa2.lbl.gov (Scott I. Chase). This document, as a collection, is Copyright (c) 1994 by Scott I. Chase (sichase@lbl.gov). The individual articles are Copyright (c) 1994 by the individual authors listed. All rights are reserved. Permission to use, copy and distribute this unmodified document by any means and for any purpose EXCEPT PROFIT PURPOSES is hereby granted, provided that both the above Copyright notice and this permission notice appear in all copies of the FAQ itself. Reproducing this FAQ by any means, included, but not limited to, printing, copying existing prints, publishing by electronic or other means, implies full agreement to the above non-profit-use clause, unless upon explicit prior written permission of the authors. This FAQ is provided by the authors "as is," with all its faults. Any express or implied warranties, including, but not limited to, any implied warranties of merchantability, accuracy, or fitness for any particular purpose are disclaimed. If you use the information in this document, in any way, you do so at your own risk. This document is probably out of date if you are reading it more than 30 days after the date which appears in the header. You can find an updated version by all the methods described in the periodic posting entitled "How to Find the Sci.Physics FAQ." The easiest way to for most people to get a copy of any FAQ is by anonymous FTP or via email server from rtfm.mit.edu. By FTP, look for the files /pub/usenet/news.answers/physics-faq/part1 /pub/usenet/news.answers/physics-faq/part2 /pub/usenet/news.answers/physics-faq/part3 /pub/usenet/news.answers/physics-faq/part4 To use the E-mail server, send mail to rtfm.mit.edu with a blank subject line and the words send usenet/news.answers/physics-faq/part1 send usenet/news.answers/physics-faq/part2 send usenet/news.answers/physics-faq/part3 send usenet/news.answers/physics-faq/part4 as the body of the message. For more details, see the periodic informational postings in sci.physics or news.announce.newusers. The FAQ is distributed to all interested parties whenever sufficient changes have accumulated to warrant such a mailing. To request that your address be added to the list, send mail to my address, above, and include the words "FAQ Mailing List" in the subject header of your message. Please send your request from the exact address you would like to use for receipt of the FAQ. To faciliate mailing, the FAQ is now being distributed as a multi-part posting. If you are a new reader of the Physics newsgroups, please read item #1, below. If you do not wish to read the FAQ at all, add "Frequently Asked Questions" to your .KILL file. A listing of new items can be found above the subject index, so that you can quickly identify new subjects of interest. To locate old items which have been updated since the last posting, look for the stars (*) in the subject index, which indicate new material. Items which have been submitted by a single individual are attributed to the original author. All other contributors have been thanked privately. New Items: NONE Index of Subjects ----------------- FAQ 1/4 - Administriva and Reference 1. An Introduction to the Physics Newsgroups on USENET 2. The Care and Feeding of Kill Files 3. Accessing and Using Online Physics Resources 4. A Physics Booklist - Recommendations from the Net 5. The Nobel Prize for Physics FAQ 2/4 - Cosmology and Astrophysics 6. Gravitational Radiation 7. Is Energy Conserved in General Relativity? 8. Olbers' Paradox 9. What is Dark Matter? 10. Some Frequently Asked Questions About Black Holes 11. The Solar Neutrino Problem FAQ 3/4 - General Physics 12. Effects Due to the Finite Speed of Light 13. Hot Water Freezes Faster than Cold! 14. Why are Golf Balls Dimpled? 15. How to Change Nuclear Decay Rates 16. What is a Dippy Bird, and how is it used? 17. Below Absolute Zero - What Does Negative Temperature Mean? 18. Which Way Will my Bathtub Drain? 19. Why do Mirrors Reverse Left and Right? 20. Why Do Stars Twinkle While Planets Do Not? 21. Time Travel - Fact or Fiction? 22. Open Questions FAQ 4/4 - Particles, Special Relativity and Quantum Mechanics 23. Special Relativistic Paradoxes and Puzzles (a) The Barn and the Pole (b) The Twin Paradox (c) The Superluminal Scissors 24. The Top Quark 25. Tachyons 26. The Particle Zoo 27. Does Antimatter Fall Up or Down? 28. What is the Mass of a Photon? 29. Baryogenesis - Why Are There More Protons Than Antiprotons? 30. The EPR Paradox and Bell's Inequality Principle ******************************************************************************** Item 1. updated 10-APR-1994 by SIC original by Scott I. Chase An Introduction to the Physics Newsgroups on USENET --------------------------------------------------- The USENET hierarchy contains a number of newsgroups dedicated to the discussion of physics and physics-related topics. These include sci.physics, sci.physics.research, sci.physics.particle and alt.sci.physics.new-theories, to all of which this general physics FAQ is cross-posted. Some of the more narrowly focussed physics newsgroups have their own FAQs, which can, of course, be found in the appropriate newsgroups. Sci.Physics is an unmoderated newsgroup dedicated to the discussion of physics, news from the physics community, and physics-related social issues. Sci.Physics.Research is a moderated newgroup designed to offer an environment with less traffic and more opportunity for discussion of serious topics in physics among experts and beginners alike. The current moderators of sci.physics.research are John Baez (jbaez@math.mit.edu), William Johnson(mwj@beta.lanl.gov), Cameron Randale (Dale) Bass (crb7q@kelvin.seas.Virginia.edu), and Lee Sawyer (sawyer@utahep.uta.edu). Sci.physics.particle is an unmoderated newsgroup dedicated to the discussion of all aspects of particle physics by people with all levels of expertise. Alt.sci.physics.new-theories is an open forum for discussion of any topics related to conventional or unconventional physics. In this context, "unconventional physics" includes any ideas on physical science, whether or not they are widely accepted by the mainstream physics community. People from a wide variety of non-physics backgrounds, as well as students and experts in all areas of physics participate in the ongoing discussions on these newsgroups. Professors, industrial scientists, graduate students, etc., are all on hand to bring physics expertise to bear on almost any question. But the only requirement for participation is interest in physics, so feel free to post -- but before you do, please do the following: (1) Read this posting, a.k.a., the FAQ. It contains good answers, contributed by the readership, to some of the most frequently asked questions. (2) Understand "netiquette." If you are not sure what this means, subscribe to news.announce.newusers and read the excellent discussion of proper net behavior that is posted there periodically. (3) Be aware that there is another newsgroup dedicated to the discussion of "alternative" physics. It is alt.sci.physics.new-theories, and is the appropriate forum for discussion of physics ideas which are not widely accepted by the physics community. Sci.Physics is not the group for such discussions. A quick look at articles posted to both groups will make the distinction apparent. (4) Read the responses already posted in the thread to which you want to contribute. If a good answer is already posted, or the point you wanted to make has already been made, let it be. Old questions have probably been thoroughly discussed by the time you get there - save bandwidth by posting only new information. Post to as narrow a geographic region as is appropriate. If your comments are directed at only one person, try E-mail. (5) Get the facts right! Opinions may differ, but facts should not. It is very tempting for new participants to jump in with quick answers to physics questions posed to the group. But it is very easy to end up feeling silly when people barrage you with corrections. So before you give us all a physics lesson you'll regret - look it up. (6) Don't post textbook problems in the hope that someone will do your homework for you. Do you own homework; it's good for you. On the other hand, questions, even about elementary physics, are always welcome. So if you want to discuss the physics which is relevent to your homework, feel free to do so. Be warned that you may still have plenty of work to do, trying to figure out which of the many answers you get are correct. (7) Be prepared for heated discussion. People have strong opinions about the issues, and discussions can get a little "loud" at times. Don't take it personally if someone seems to always jump all over everything you say. Everyone was jumping all over everybody long before you got there! You can keep the discussion at a low boil by trying to stick to the facts. Clearly separate facts from opinion - don't let people think you are confusing your opinions with scientific truth. And keep the focus of discussion on the ideas, not the people who post them. (8) Tolerate everyone. People of many different points of view, and widely varying educational backgrounds from around the world participate in this newsgroup. Respect for others will be returned in kind. Personal criticism is usually not welcome. ******************************************************************************** Item 2. The Care and Feeding of Kill Files updated 28-SEP-1993 by SIC ---------------------------------- original by Scott I. Chase With most newsreaders, it is possible for you to selectively ignore articles with certain title words, or by a certain author. This feature is implemented as a "kill file," which contains instructions to your newsreader about how to filter out unwanted articles. The exact details on how to specify articles you want to ignore varies from program to program, so you should check the documentation for your particular newsreader. Some examples are given below for a few common newsreaders. If your newsreader does not support kill files, you may want to consider upgrading to one that does. Some of the more popular newsreaders that support kill files are rn, trn, nn, xrn, gnews, and gnus. Let's say that you wish to `kill' all posts made by a certain user. Using the `rn' or `trn' newsreader, you would type a [CTRL]-K while in read mode to begin editing the kill file, and then type the following: /From: username@sitename.com/h:j This will look for articles that come with "From: username@sitename.com" in the header, junk them, and then display the subject lines of titles that just got zapped. For names of Subject titles, you would type something like this: /: *The Big Bang Never Happened/:j /: *Space Potatoes Have Inertia/:j When finished, save the kill file in the normal manner for the editor you're using. In trn 3.0 and higher you can use the faster command /username@sitename\.com/f:j to kill all of username's postings. In trn change the 'j' to ',' to kill all the replies as well. Note the '\' to escape the '.'. This is needed in any search string in a kill file (although they usually work if you forget). Also in [t]rn you can simply hit K to automatically killfile the current subject without directly editing the file. For the `nn' newsreader, type a capital K when viewing the contents of a newsgroup. nn will then ask you a few questions on whether it is a Subject or a Name, duration of time that the posts are to be killed, etc. Simply answer the questions accordingly. There's a lot more to it, of course, when you become proficient. You can kill all articles cross-posted to specific groups, for example, or kill any article with a particular name or phrase appearing anywhere in the header. A good primer is in the "rn KILL file FAQ" which appears periodically in news.answers. You should also check the man pages for your particular newsreader. ******************************************************************************** Item 3. updated 28-JUL-1994 by SIC original by Scott I. Chase Accessing and Using Online Physics Resources -------------------------------------------- (I) Particle Physics Databases The Full Listings of the Review of Particle Properties (RPP), as well as other particle physics databases, are accessible on-line. Here is a summary of the major ones, as described in the RPP: (A) SLAC Databases PARTICLES - Full listings of the RPP HEP - Guide to particle physics preprints, journal articles, reports, theses, conference papers, etc. CONF - Listing of past and future conferences in particle physics HEPNAMES - E-mail addresses of many HEP people INST - Addresses of HEP institutions DATAGUIDE - Adjunct to HEP, indexes papers REACTIONS - Numerical data on reactions (cross-sections, polarizations, etc) EXPERIMENTS - Guide to current and past experiments Anyone with a SLAC account can access these databases. Alternately, most of us can access them via QSPIRES. You can access QSPIRES via BITNET with the 'send' command ('tell','bsend', or other system-specific command) or by using E-mail. For example, send QSPIRES@SLACVM FIND TITLE Z0 will get you a search of HEP for all papers which reference the Z0 in the title. By E-mail, you would send the one line message "FIND TITLE Z0" with a blank subject line to QSPIRES@SLACVM.BITNET or QSPIRES@VM.SLAC.STANFORD.EDU. QSPIRES is free. Help can be obtained by mailing "HELP" to QSPIRES. For more detailed information, see the RPP, p.I.12, or contact: Louise Addis (ADDIS@SLACVM.BITNET) or Harvey Galic (GALIC@SLACVM.BITNET). (B) CERN Databases on ALICE LIB - Library catalogue of books, preprints, reports, etc. PREP - Subset of LIB containing preprints, CERN publications, and conference papers. CONF - Subset of LIB containing upcoming and past conferences since 1986 DIR - Directory of Research Institutes in HEP, with addresses, fax, telex, e-mail addresses, and info on research programs ALICE can be accessed via DECNET or INTERNET. It runs on the CERN library's VXLIB, alias ALICE.CERN.CH (IP# 128.141.201.44). Use Username ALICE (no password required.) Remote users with no access to the CERN Ethernet can use QALICE, similar to QSPIRES. Send E-mail to QALICE@VXLIB.CERN.CH, put the query in the subject field and leave the message field black. For more information, send the subject "HELP" to QALICE or contact CERN Scientific Information Service, CERN, CH-1211 Geneva 23, Switzerland, or E-mail MALICE@VXLIB.CERN.CH. Regular weekly or monthly searches of the CERN databases can be arranged according to a personal search profile. Contact David Dallman, CERN SIS (address above) or E-mail CALLMAN@CERNVM.CERN.CH. DIR is available in Filemaker PRO format for Macintosh. Contact Wolfgang Simon (ISI@CERNVM.CERN.CH). (C) Particle Data Group Online Service The Particle Data Group is maintaining a new user-friendly computer database of the Full Listings from the Review of Particle Properties. Users may query by paper, particle, mass range, quantum numbers, or detector and can select specific properties or classes of properties like masses or decay parameters. All other relevant information (e.g. footnotes and references) is included. Complete instructions are available online. The last complete update of the RPP database was a copy of the Full Listings from the Review of Particle Properties which was published as Physical Review D45, Part 2 (1 June 1992). A subsequent update made on 27 April 1993 was complete for unstable mesons, less complete for the W, Z, D mesons, and stable baryons, and otherwise was unchanged from the 1992 version. DECNET access: SET HOST MUSE or SET HOST 42062 TCP/IP access: TELNET MUSE.LBL.GOV or TELNET 131.243.48.11 Login to: PDG_PUBLIC with password HEPDATA. Contact: Gary S. Wagman, (510)486-6610. Email: (GSWagman@LBL.GOV). (D) Other Databases Durham-RAL and Serpukhov both maintain large databases containing Particle Properties, reaction data, experiments, E-mail ID's, cross-section compilations (CS), etc. Except for the Serpukhov CS, these databases overlap SPIRES at SLAC considerably, though they are not the same and may be more up-to-date. For details, see the RPP, p.I.14, or contact: For Durham-RAL, Mike Whalley (MRW@UKACRL.BITNET,MRW@CERNVM.BITNET) or Dick Roberts (RGR@UKACRL.BITNET). For Serpukhov, contact Sergey Alekhin (ALEKHIN@M9.IHEP.SU) or Vladimir Exhela (EZHELA@M9.IHEP.SU). (II) Online Preprint Sources There are a number of online sources of preprints: alg-geom@publications.math.duke.edu (algebraic geometry) astro-ph@babbage.sissa.it (astrophysics) cond-mat@babbage.sissa.it (condensed matter) funct-an@babbage.sissa.it (functional analysis) e-mail@babbage.sissa.it (e-mail address database) hep-lat@ftp.scri.fsu.edu (computational and lattice physics) hep-ph@xxx.lanl.gov (high energy physics phenomenological) hep-th@xxx.lanl.gov (high energy physics theoretical) hep-ex@xxx.lanl.gov (high energy physics experimental) lc-om@alcom-p.cwru.edu (liquid crystals, optical materials) gr-qc@xxx.lanl.gov (general relativity, quantum cosmology) nucl-th@xxx.lanl.gov, (nuclear physics theory) nlin-sys@xyz.lanl.gov (nonlinear science) Note that babbage.sissa.it also mirrors hep-ph, hep-th and gr-qc. To get things if you know the preprint number, send a message to the appropriate address with subject header "get (preprint number)" and no message body. If you *don't* know the preprint number, or want to get preprints regularly, or want other information, send a message with subject header "help" and no message body. On the Web, some of these preprint archive databases are accessible at url http://xxx.lanl.gov/. The following GOPHER servers which are concerned with physics are currently running on the Internet. They mainly provide a full-text indexed archive to the preprint mailing lists: xyz.lanl.gov, port 70 (LANL Nonlinear Sciences) mentor.lanl.gov,70 ('traditional' preprint lists) babbage.sissa.it,70 ('traditional' preprint lists) physinfo.uni-augsburg.de,70 (all lists, but only abstracts) (III) Mailing Lists In addition to the preprint services already described, these mailing lists allow one to regularly receive material via email: ALPHA-L ALPHA-L@LEPICS L3 Alpha physics block analysis diagram ASTRO-PL ASTRO-PL@JPNYITP Preprint server for Astrophysics FUSION FUSION@NDSUVM1 Fusion - sci.physics.fusion OPTICS-L OPTICS-L%ILNCRD.BITNET.CUNYVM.CUNY.EDU Israel Optics/Laser OPTICS OPTICS@TOWSONVX Optical Research PHYS-L PHYS-L@UWF Forum for Physics Teachers PHYS-STU PHYS-STU@UWF Physics Student Discussion List PHYSHARE PHYSHARE@PSUVM Sharing resources: high school physics PHYSIC-L PHYSIC-L@TAUNIVM Physics List PHYSICS PHYSICS@MARIST (Peered) Physics Discussion PHYSICS@RICEVM1 (Peered) Physics Discussion PHYSICS@UBVM (Peered) Physics Discussion PHYSICS PHYSICS@UNIX.SRI.COM Physics discussion list PHYSJOB PHYSJOB@WAYNEST1 Physics Jobs Discussion List POLYMERP POLYMERP@HEARN (Peered) Polymer Physics discussions POLYMERP@RUTVM1 (Peered) Polymer Physics discussions SPACE SPACE-L@UGA Space News SPACE-IL SPACE-IL-L@TAUNIVM.BITNET@CUNYVM.CUNY.EDU Israel SpaceNews SUP-COND SUPCOND-L@TAUNIVM.BITNET@CUNYVM.CUNY.EDU Superconductivity WKSPHYS WKSPHYS@IDBSU WKSPHYS@IDBSU - WORKSHOP PHYSICS LIST To subscribe to one of these, send email with no subject header and a message of the form SUB or SUBSCRIBE e.g. SUBSCRIBE SPACE Werner Braun (IV) The World Wide Web There is a wealth of information, on all sorts of topics, available on the World Wide Web [WWW], a distributed HyperText system (a network of documents connected by links which can be activated electronically). Subject matter includes some physics areas such as High Energy Physics, Astrophysics abstracts, and Space Science, but also includes such diverse subjects as bioscience, musics, and the law. * How to get to the Web If you have no clue what WWW is, you can go over the Internet with telnet to info.cern.ch (no login required) which brings you to the WWW Home Page at CERN. You are now using the simple line mode browser. To move around the Web, enter the number given after an item. * Browsing the Web If you have a WWW browser up and running, you can move around more easily. The by far nicest way of "browsing" through WWW uses the X-Terminal based tool "XMosaic". Binaries for many platforms (ready for use) and sources are available via anonymous FTP from ftp.ncsa.uiuc.edu in directory Web/xmosaic. The general FTP repository for browser software is info.cern.ch (including a hypertext browser/editor for NeXTStep 3.0) * For Further Information For questions related to WWW, try consulting the WWW-FAQ: Its most recent version is available via anonymous FTP on rtfm.mit.edu in /pub/usenet/news.answers/www-faq , or on WWW at http://www.vuw.ac.nz:80/non-local/gnat/www-faq.html The official contact (in fact the midwife of the World Wide Web) is Tim Berners-Lee, timbl@info.cern.ch. For general matters on WWW, try www-request@info.cern.ch or Robert Cailliau (responsible for the "physics" content of the Web, cailliau@cernnext.cern.ch). (V) Other Archive Sites (A) FreeHEP The FreeHEP collection of software, useful to high energy physicists is available on the Web as http://heplibw3.slac.stanford.edu:80/FIND/FHMAIN.HTML or anonymous ftp to freehep.scri.fsu.edu. This is high-energy oriented but has much which is useful to other fields also. Contact Saul Youssef (youssef@scri.fsu.edu) for more information. (B) AIP Archives An archive of the electronic newsletters of the American Institute of Physics are now available on nic.hep.net. The three publications are "For Your Information", "The Physics News Update" written by Dr. Phil Schewe, and "What's New" written by Dr. Robert Park". FYI is archived as [ANON_FTP.AIP-FYI.199*]AIPFYI-nnn-mmmddyyyy.TXT. PNU is archived as [ANON_FTP.PHYSICS-NEWS.199*]PHYSICS-NEWS-yyyy-mm-dd.TXT. WN is archived as [ANON_FTP.WHATS-NEW.199*]WHATS-NEW-yyyy-mm-dd.TXT In each case, the last issue received is always available as: latest.txt. (C) There is an FTP archive site of preprints and programs for nonlinear dynamics, signal processing, and related subjects on node lyapunov.ucsd.edu (132.239.86.10) at the Institute for Nonlinear Science, UCSD. Just login anonymously, using your host id as your password. Contact Matt Kennel (mbk@inls1.ucsd.edu) for more information. ******************************************************************************** Item 4. original Vijay D. Fafat updated 28-JUL-1994 by SIC A Physics Booklist - Recommendations from the Net ------------------------------------------------- This article is a complilation of books recommended by sci.physics participants as the 'standard' or 'classic' texts on a wide variety of topics of general interest to physicists and physics students. As a guide to finding the right book for you, many of the comments from the contributors have been retained. This document is still under construction. Many entries are incomplete, and many good books are not yet listed. Please feel free to contribute to this project. Contact pvfafat@GSB.UChicago.EDU, who will compile the information for future updates. The formatting and organization of this article will also be reviewed and improved in future updates. This is the first try, and it shows. Please bear with us. Subject Index ------------- You can find books in the area of your choice by searching forward for the following keywords: General Physics Classical Mechanics Classical Electromagnetism Quantum Mechanics Statistical Mechanics Condensed Matter Special Relativity Particle Physics General Relativity Mathematical Methods Nuclear Physics Cosmology Astronomy Plasma Physics Numerical Methods/Simulations Fluid Dynamics Nonlinear Dynamics, Complexity and Chaos Optics (Classical and Quantum), Lasers Mathematical Phyiscs Atomic Phyiscs Low Temperature Physics, Superconductivity ------------------------------ Subject: General Physics (so even mathematicians can understand it!) 1] M. S. Longair, Theoretical concepts in physics, 1986. An alternative view of theoretical reasoning in Physics for final year undergrads. 2] Sommerfeld, Arnold - Lectures on Theoretical Physics Sommerfeld is God for mathematical physics. 3] Feynman, R: The Feynman lectures on Physics - 3 vols. 4] Walker, Jearle: The Flying Circus of Physics Note: There is the entire Landau and Lifshitz series. They have volumes on classical mechanics, classical field theory, E&M, QM, QFT, Statistical Physics, and more. Very good series that spans entire graduate level curriculum. 5] The New physics / edited by Paul Davies. This is one *big* book to go through and takes time to look through topics as diverse as general relativity, astrophysics, particle theory, quantum mechanics, chaos and nonlinearity, low temperature physics and phase transitions. Nevertheless, this is one excellent book of recent (1989) physics articles, written by several physicists/astrophysicists. 6] QED : The strange theory of light and matter / Richard P. Feynman. One need no longer be confused by this beautiful theory. Richard Feynman gives an exposition that is once again and by itself a beautiful explanation of the theory of photon-matter interactions. ------------------------------ Subject: Classical Mechanics 1] Goldstein, Herbert "Classical Mechanics", 2nd ed, 1980. intermediate to advanced; excellent bibliography 2] Introductory: The Feyman Lectures, vol 1. 3] Symon, Keith - Mechanics, 3rd ed., 1971 undergrad level. 4] Corbin, H and Stehle, P - Classical Mechanics, 2nd ed., 1960 5] V.I. Arnold, Mathematical methods of classical mechanics, translated by K. Vogtmann and A. Weinstein, 2nd ed., 1989. The appendices are somewhat more advanced and cover all sorts of nifty topics. Deals with Geometrical aspects of classical mechanics 6] Resnick, R and Halliday, D - Physics, vol 1, 4th Ed., 1993 Excellent introduction without much calculus. Lots of problems and review questions. 7] Marion, J & Thornton, "Classical Dynamics of Particles and Systems", 2nd ed., 1970. Undergrad level. A useful intro to classical dynamics. Not as advanced as Goldstein, but with real worked-out examples. 8] Fetter, A and Walecka, J: Theoretical mechanics of particles and continua. graduate level text, a little less impressive than Goldstein (and sometimes a little less obtuse) 9] Many-Particle Physics, G. Mahan 10] Fetter & Walecka: Theoretical Mechanics of Particles and Continua. ------------------------------ Subject: Classical Electromagnetism 1] Jackson, J. D. "Classical Electrodynamics", 2nd ed., 1975 intermediate to advanced. 2] a] Edward Purcell, Berkely Physics Series Vol 2. You can't beat this for the intelligent, reasonably sophisticated beginning physics student. He tells you on the very first page about the experimental proof of how charge does not vary with speed. b] Chen, Min, Berkeley Physics problems with solutions. 3] Reitz, J, Milford, F and Christy, R: Foundations of Electromagnetic Theory 3rd ed., 1979 Undergraduate level. Pretty difficult to learn from at first, but good reference, for some calculations involving stacks of thin films and their reflectance and transmission properties, for eg. It's a good, rigorous text as far as it goes, which is pretty far, but not all the way. For example, they have a great section on optical properties of a single thin film between two dielectric semi-infinate media, but no generalization to stacks of films. 4] Feynman, R: Feynman Lectures, vol 2 5] Lorrain, P & Corson D: Electromagnetism, Principles and Applications, 1979 6] Resnick, R and Halliday, D: Physics, vol 2, 4th ed., 1993 7] Igor Irodov, Problems in Physics. Excellent and extensive collection of EM problems for undergrads. 8] Smythe, William: Static and Dynamic Electricity, 3rd ed., 1968 For the extreme masochists. Some of the most hair-raising EM problems you'll ever see. Definitely not for the weak-of-heart. 9] Landau, Lifschitz, and Pitaevskii, "Electrodynamics of Continuous Media," 2nd ed., 1984 same level as Jackson and with lots of material not in Jackson. 10] Marion, J and Heald, M: "Classical Electromagnetic Radiation," 2nd ed., 1980 undergraduate or low-level graduate level ------------------------------ Subject: Quantum Mechanics 1] Cohen-Tannoudji, "Quantum Mechanics I & II", 1977. introductory to intermediate. 2] Liboff - Introductory Quantum Mechanics, 2nd ed., 1992 elementary level. Makes a few mistakes. 3] Sakurai, J - Modern Quantum Mechanics, 1985 4] Sakurai, J - Advanced Quantum Mechanics, 1967 Good as an introduction to the very basic beginnings of quantum field theory, except that it has the unfortunate feature of using 'imaginary time' to make Minkowski space look Euclidean. 5] Wheeler, J and Zurek, W (eds.) Quantum Theory and Measurement, 1983 On the philosophical end. People who want to know about interpretations of quantum mechanics should definitely look at this collection of relevant articles. 6] DeWitt, C and Neill Graham: The Many Worlds Interpretation of Quantum Mechanics Philosophical. Collection of articles. 7] Everett, H: "Theory of the Universal Wavefunction" An exposition which has some gems on thermodynamics and probability. Worth reading for this alone. 8] Bjorken, J and Drell, S - Relativistic Quantum Mechanics/ Relativistic Quantum Fields (for comments, see under Particle Physics) 9] Ryder, Lewis - Quantum Field Theory, 1984 10] Guidry, M - Gauge Field Theories : an introduction with applications, 1991 11] Messiah, A: Quantum Mechanics, 1961 12] Dirac, Paul: a] Principles of QM, 4th ed., 1958 b] Lectures in QM, 1964 c] Lectures on Quantum Field Theory, 1966 13] Itzykson, C and Zuber, J: Quantum Field Theory, 1980 Very advanced level. 14] Slater, J: "Quantum theory: Address, essays, lectures. Good follow on to Schiff. note: Schiff, Bjorken and Drell, Fetter and Walecka, and Slater are all volumes in "International Series in pure and Applied Physics" published by McGraw Hill. 15] Pierre Ramond, Field Theory: A Modern Primer, 2nd edition. Volume 74 in the FiP series. The so-called "revised printing" is a must, as they must've rushed the first printing of the 2nd edition, and it's full of inexcusable mistakes. 16] Feynman, R: Lectures - vol III : A non-traditional approach. A good place to get an intuitive feel for QM, if one already knows the traditional approach. &&&&&&& 17] Heitler & London, "Quantum theory of molecules"?? 18] Bell: Speakable and Unspeakable in Quantum Mechanics, 1987 An excellent collection of essays on the philosophical aspects of QM. 19] Milonni: The quantum vacuum: an introduction to quantum electrodynamics 1994. 20] Holland: The Quantum Theory of Motion A good bet for strong foundation in QM. 21] John Von Neumann: Mathematical foundations of quantum mechanics, 1955. For the more mathematical side of quantum theory, especially for those who are going to be arguing about measurement theory. 22] Schiff, Leonard, L: Quantum Mechanics, 3rd ed., 1968 A little old. Not much emphasis on airy-fairy things like many worlds or excessive angst over Heisenberg UP. Straight up QM for people who want to do calculations. Introductory gradauate level. Mostly Schrod. eqn. Spin included, but only in an adjunct to Schrod. Not much emphasis on things like Dirac eqn., etc. 23] "Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles" by Eisberg and Resnick, 2nd ed., 1985. This is a basic intro. to QM, and it is excellent for undergrads. It is not thorough with math, but fills in a lot of the intuitive stuff that most textbooks do not present. 24] Elementary Quantum Mechanics, David Saxon It's a decent undergraduate (senior level) text. 25] Intermediate Quantum Mechanics, Bethe and Jackiw ------------------------------ Subject: Statistical Mechanics 1] David Chandler, "Introduction to Modern Statistical Mechanics", 1987 &&&&&&& 2] Kittel & Kroemer: Statistical Thermodynamics. Best of a bad lot. 3] Rief, F : Principles of statistical and thermal physics. the big and little Reif stat mech books. Big Reif is much better than Kittel & Kroemer. He uses clear language but avoids the handwaving that thermodynamics often gives rise to. More classical than QM oriented. 4] Bloch, Felix: Fundamentals of Statistical Mechanics. 5] Radu Balescu "Statistical Physics" Graduate Level. Good description of non-equilibrium stat. mech. but difficult to read. It is all there, but often you don't realize it until after you have learned it somewhere else. Nice development in early chapters about parallels between classical and quantum Stat. Mech. &&&&&&&6] Huang (grad) The following 6 books deal with modern topics in (mostly) classical statistical mechanics, namely, the central notions of linear response theory (Forster) and critical phenomena (the rest) at level suitable for beginning graduate students. 7] Thermodynamics, by H. Callen. 8] Statistical Mechanics, by R. K. Pathria 9] Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, by D. Forster 10] Introduction to Phase Transitions and Critical Phenomena, by H. E. Stanley 11] Modern Theory of Critical Phenomena, by S. K. Ma 12] Lectures on Phase Transitions and the Renormalization Group, by N. Goldenfeld 13] Methods of Quantum Field Theory in Statistical Physics, Abrikosov, Gorkov, and Dyzaloshinski ------------------------------ Subject: Condensed Matter 1] Charles Kittel, "Introduction to Solid State Physics" (ISSP), introductory 2] Ashcroft and Mermin, "Solid State Physics", interm to advanced 3] Charles Kittel, Quantum Theory of Solids. This is from before the days of his ISSP; it is a more advanced book. At a similar level... 4] Solid State Theory, by W. A. Harrison (a great bargain now that it's published by Dover) 5] Theory of Solids, by Ziman. 6] Fundamentals of the Theory of Metals, by Abrikosov Half of the book is on superconductivity. ------------------------------ Subject: Special Relativity 1] Taylor and Wheeler, _Spacetime Physics_ Still the best introduction out there. 2] "Relativity" : Einstein's popular exposition. 3] Wolfgang Rindler, Essential Relativity. Springer 1977 With a heavy bias towards astrophysics and therefore on a more moderate level formally. Quite strong on intuition. 4] A P French: Special Relativity A through introductory text. Good discussion of the twin paradox, pole and the barn etc. Plenty of diagrams illustrating lorentz transformed co-ordinates, giving both an algebraic and geometrical insight to SR. ------------------------------ Subject: Particle Physics 1] Kerson Huang, Quarks, leptons & gauge fields, World Scientific, 1982. Good on mathematical aspects of gauge theory and topology. 2] L. B. Okun, Leptons and quarks, translated from Russian by V. I. Kisin, North-Holland, 1982. 3] T. D. Lee, Particle physics and introduction to field theory. 4] Itzykson: Particle Physics 5] Bjorken & Drell: "Relativistic Quantum Mechanics" One of the more terse books. The first volume on Relativistic quantum mechanics covers the subject in a blinding 300 pages. Very good if you *really* want to know the subject. 6] Francis Halzen & Alan D. Martin, "Quarks & Leptons", beginner to intermediate, this is a standard textbook for graduate level courses. Good knowledge of quantum mechanics and special relativity is assumed. A very good introduction to the concepts of particle physics. Good examples, but not a lot of Feynman diagram calculation. For this, see Bjorken & Drell. 7] Donald H. Perkins: Introduction to high energy physics Regarded by many people in the field as the best introductory text at the undergraduate level. Covers basically everything with almost no mathematics. 8] Close,Marten, and Sutton: The Particle Explosion. A popular exposition of the history of particle physics with terrific photography. 9] Christine Sutton: Spaceship Neutrino A good, historical, largely intuitive introduction to particle physics, seen from the neutrino viewpoint. ------------------------------ Subject: General Relativity 1] The telephone book, er, that is, MTW, Meisner, Thorne and Wheeler. The "bible". W. H. Freeman & Co., San Francisco 1973 2] Robert M. Wald, Space, Time, and Gravity : the Theory of the Big Bang and Black Holes. A good nontechnical introduction, with a nice mix of mathematical rigor and comprehensible physics. 3] Schutz: First Course in General Relativity. 4] Weinberg: Gravitation and Cosmology Good reference book, but not a very good read. 5] Hans Ohanian: Gravitation & Spacetime (recently back in print) For someone who actually wants to learn to work problems, ideal for self-teaching, and math is introduced as needed, rather than in a colossal blast. 6] Robert Wald, General Relativity It's a more advanced textbook than Wald's earlier book, appropriate for an introductory graduate course in GR. It strikes just the right balance, in my opinion, between mathematical rigor and physical intuition. It has great mathematics appendices for those who care about proving theorems carefully, and a good introduction to the problems behind quantum gravity (although not to their solutions). I think it's MUCH better than either MTW or Weinberg. ------------------------------ Subject: Mathematical Methods (so that even physicists can understand it!) 1] Morse and Feshbach - Methods of Theoretical Physics (can be hard to find) 2] Mathews and Walker, Mathematical Methods for Physicists. An absolute joy for those who love math, and very informative even for those who don't. 3] Arfken "Mathermatical Methods for Physicists" Academic Press Good introduction at graduate level. Not comprehensive in any area, but covers many areas widely. Arfken is to math methods what numerical recipes is to numerical methods -- good intro, but not the last word. 4] Zwillinger "Handbook of Differential Equations." Academic Press Kind of like CRC tables but for ODE's and PDE's. Good reference book when you've got a Diff. Eq. and wnat to find a solution. 5] Gradshteyn and Ryzhik "Table of Integrals, Series, and Products" Academic THE book of integrals. Huge, but useful when you need an integral. ------------------------------ Subject: Nuclear Physics 1] Preston and Bhaduri, "Structure of the Nucleus" 2] Blatt and Weisskopf - Theoretical Nuclear Physics 3] DeShalit and Feshbach - Theoretical Nuclear Physics This is serious stuff. Also quite expensive even in paper. I think the hard cover is out of print. This is volume I (structure). Volume II (scattering) is also available. 4] Satchler: "Direct Nuclear Reactions". ------------------------------ Subject: Cosmology 1] J. V. Narlikar, Introduction to Cosmology.1983 Jones & Bartlett Publ. For people with a solid background in physics and higher math, THE introductory text, IMHO, because it hits the balance between mathematical accuracy (tensor calculus and stuff) and intuitive clarity/geometrical models very well for grad student level. Of course, it has flaws but only noticeable by the Real Experts (TM) ... 2] Hawking: Brief History of Time Popular Science 3] Weinberg: First Three Minutes A very good book. It's pretty old, but most of the information in it is still correct. 4] Timothy Ferris: Coming of Age in the Milky Way. Popular Science. 5] Kolb and Turner: The Early Universe. At a more advanced level, a standard reference. As the title implies, K&T cover mostly the strange physics of very early times: it's heavy on the particle physics, and skimps on the astrophysics. There's a primer on large-scale structure, which is the most active area of cosmological research, but it's really not all that good. 6] Peebles: Principles of Physical Cosmology. Comprehensive, and on the whole it's quite a good book, but it's rather poorly organized. I find myself jumping back and forth through the book whenever I want to find anything. 7] "Black Holes and Warped Spacetime", by William J. Kaufmann, III. This is a great, fairly thorough, though non-mathematical description of black holes and spacetime as it relates to cosmology. I was impressed by how few mistakes Kaufmann makes in simplifying, while most such books tend to sacrifice accuracy for simplicity. 8] "Principles of Cosmology and Gravitation", Berry, M. V. This is very well-written, and useful as an undergrad text. 9] Dennis Overbye: Lonely Hearts of the Cosmos The unfinished history of converge on Hubble's constant is presented, from the perspective of competing astrophysics rival teams and institute, along with a lot of background on cosmology (a lot on inflation, for instance). A good insight into the scientific process. 10] The big bang / Joseph Silk. I consider Silk's book an absolute must for those who want a quick run at the current state of big bang cosmology and some of the recent (1988)issues which have given so many of us lots of problems to solve. 10] Bubbles, voids, and bumps in time : the new cosmology / edited by James Cornell. This is quite a nice and relatively short read for some of the pressing issues (as of 1987-88) in astrophysical cosmology. 11] Structure formation in the universe / T. Padmanabhan. A no-nonsense book for those who want to calculate some problems strictly related to the formation of structure in the universe. The book even comes complete with problems at the end of each chapter. A bad thing about this book is that there isn't any coverage on clusters of galaxies and the one really big thing that annoys the hell outta me is that the bibliography for *each* chapter is all combined in one big bibliography towards the end of the book which makes for lots of page flipping. 12] The large-scale structure of the universe / by P. J. E. Peebles. This is a definitive book for anyone who desires an understanding of the mathematics required to develop the theory for models of large scale structure. The essential techniques in the description of how mass is able to cluster under gravity from a smooth early universe are discussed. While I find it dry in some places, there are noteworthy sections (e.g. statistical tests, n-point correlation functions, etc.). ------------------------------ Subject: Astronomy 1] Hannu Karttunen et al. (eds.): Fundamental Astronomy. The best book covering all of astronomy (also for absolute beginners) AND still going into a lot of detail for special work for people more involved AND presenting excellent graphics and pictures. 2] Pasachoff: Contemporary Astronomy Good introductory textbook for the nontechnical reader. It gives a pretty good overview of the important topics, and it has good pictures. 3] Shu, Frank: The physical universe : an introduction to astronomy, 4] Astrophysical formulae : a compendium for the physicist and astrophysicist / Kenneth R. Lang. Here is everything you wanted to know (and more!) about astrophysical formulae on a one-line/one-parargraph/one-shot deal. Of course, the formulae come complete with references (a tad old, mind you) but it's a must for everyone who's working in astronomy and astrophysics. You learn something new everytime you flip through the pages! ------------------------------ Subject: Plasma Physics (See Robert Heeter's sci.phys.fusion FAQ for details) ------------------------------ Subject: Numerical Methods/Simulations 1] Johnson and Rees "Numerical Analysis" Addison Wesley Undergrad. level broad intro. 2] Numerical Recipes in X (X=c,fortran,pascal,etc) Tueklosky and Press 3] Young and Gregory "A survey of Numerical Mathmematics" Dover 2 volumes. Excellent overview at grad. level. Emphasis toward solution of elliptic PDE's, but good description of methods to get there including linear algebra, Matrix techniques, ODE solving methods, and interpolation theory. Biggest strength is it provides a coherent framework and structure to attach most commonly used num. methods. This helps understanding about why to use one method or another. 2 volumes. 4]Hockney and Eastwood "Computer Simulation Using Particles" Adam Hilger Good exposition of particle-in-cell (PIC) method and extensions. Applications to plasmas, astronmy, and solid state are discussed. Emphasis is on description of algortihms. Some results shown. 5] Birdsall and Langdon "Plasma Physics via Computer Simulations" PIC simulation applied to plasmas. Source codes shown. First part is almost a tutorial on how to do PIC. Second part is like a series of review articles on different PIC methods. 6] Tajima "Computational Plasma Physics: With Applications to Fusion and Astrophysics" Addison Wesley Frontiers in physics Series. Algorthims described. Emphasis on physics that can be simulated. Applications limited to plasmas, but subjest areas very broad, fusion, cosmology, solar astrophysics, magnetospheric physics, plasma turbulence, general astrophysics. ------------------------------ Subject: Fluid Dynamics 1] Triton "Physical Fluid Dynamics" 2] Batchelor 3] Chandreshekar ------------------------------ Subject: Nonlinear Dynamics, Complexity, and Chaos 1] Prigogine, "Exploring Complexity" Or any other prigogine book. If you've read one, you read most of all of them (A poincare recurrance maybe?) 2] Guckenheimer and Holmes "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields" Springer Borderline phys/math. Advanced level. Nuts and bolts how to textbook. No Saganesque visionary thing from the authors. They let the topic provide all the razz-ma-tazz, which is plenty if you pay attention and remember the physics that it applies to. 3] Lieberman and Lichenstein 4] "The Dreams Of Reason" by Heinz Pagels. He is a very clear and interesting, captivating writer, and presents the concepts in a very intuitive way. The level is popular science, but it is still useful for physicists who know little of complexity. 5] M.Mitchell Waldrop: Complexity. A popular intro to the subject of spontaneous orders, complexity and so on. Covers implications for economics, biology etc and not just physics. ------------------------------ Subject: Optics (Classical and Quantum), Lasers 1] Born and Wolf standard reference. 2] Sommerfeld, A: For the more classically minded 3] Allen and Eberly's Optical Resonance and Two-Level Atoms. For quantum optics, the most readable but most limited. 4] Quantum Optics and Electronics (Les Houches summer school 1963-or-4, but someone has claimed that Gordon and Breach, NY, are going to republish it in 1995), edited by DeWitt, Blandin, and Cohen- Tannoudji, is noteworthy primarily for Glauber's lectures, which form the basis of quantum optics as it is known today. 5] Sargent, Scully, & Lamb: Laser Physics 6] Yariv: Quantum Electronics 7] Siegman: Lasers 8] Shen: The Principles of Nonlinear Optics 9] Meystre & Sargent: Elements of Quantum Optics 10] Cohen-Tannoudji, Dupont-Roc, & Grynberg: Photons, Atoms and Atom-Photon Interactions. 11] Hecht: Optics A very good intro optics book (readable by a smart college freshman, but useful as a reference to the graduate student) 12] "Practical Holography" by Graham Saxby, Prentice Hall: New York; 1988. This is a very clear and detailed book that is an excellent introduction to holography for interested undergraduate physics people, as well as advanced readers, esp. those who are interested in the practical details of making holograms and the theory behind them. ------------------------------ Subject: Mathematical Physics (Lie Algebra, Topology, Knot Theory, Tensors, etc.) These are books that are sort of talky and fun to read (but still substantial - some harder than others). These include things mathematicians can read about physics as well as vice versa. These books are different than the "bibles" one must have on hand at all times to do mathematical physics. 1] Yvonne Choquet-Bruhat, Cecile DeWitt-Morette, and Margaret Dillard-Bleick, Analysis, manifolds, and physics (2 volumes) Something every mathematical physicist should have at her bedside until she knows it inside and out - but some people say it's not especially easy to read. 2] Jean Dieudonne, A panorama of pure mathematics, as seen by N. Bourbaki, translated by I.G. Macdonald. Gives the big picture in math. 3] Robert Hermann, Lie groups for physicists, Benjamin-Cummings, 1966. 4] George Mackey, Quantum mechanics from the point of view of the theory of group representations, Mathematical Sciences Research Institute, 1984. 5] George Mackey, Unitary group representations in physics, probability, and number theory. 6] Charles Nash and S. Sen, Topology and geometry for physicists. 7] B. Booss and D.D. Bleecker, Topology and analysis: the Atiyah-Singer index formula and gauge-theoretic physics. 8] Bamberg and S. Sternberg, A Course of Mathematics for Students of Physics. 9] Bishop & Goldberg: Tensor Analysis on Manifolds. 10] Flanders : Differential Forms with applications to the Physical Sciences. 11] Dodson & Poston Tensor Geometry. 12] von Westenholz: Differential forms in Mathematical Physics. 13] Abraham, Marsden & Ratiu: Manifolds, Tensor Analysis and Applications. 14] M. Nakahara, Topology, Geometry and Physics. 15] Morandi: The Role of Topology in Classical and Quantum Physics 16] Singer, Thorpe: Lecture Notes on Elemetary Topology and Geometry 17] L. Kauffman: Knots and Physics, World Scientific, Singapore, 1991. 18] Yang, C and Ge, M: Braid group, Knot Theory & Statistical Mechanics. 19] Kastler, D: C-algebras and their applications to Statistical Mechanics and Quantum Field Theory. 20] Courant and Hilbert "Methods of Mathematical Physics" Wiley Really a math book in disguise. Emphasis on ODE's and PDE's. Proves existence, etc. Very comprehensive. 2 volumes. 21] Cecille Dewitt: is publishing a book on manifolds that should be out soon (maybe already is). Very high level, but supposedly of great importance for anyone needing to set the Feynman path integral in a firm foundation. 22] Howard Georgi, "Lie Groups for Particle Phyiscs" Addison Wesley Frontiers in Physics Series. 23] Synge and Schild ------------------------------ Subject: Atomic Physics 1] Born and Wolf: A classic, though a little old. ------------------------------ Subject: Low Temperature Physics, Superconductivity (high and low Tc), etc. 1] The Theory of Quantum Liquids, by D. Pines and P. Nozieres 2] Superconductivity of Metals and Alloys, P. G. DeGennes A classic introduction. 3] Theory of Superconductivity, J. R. Schrieffer 4] Superconductivity, M. Tinkham 5] Experimental techniques in low-temperature physics / by Guy K. White. This is considered by many as a "bible" for those working in experimental low temperature physics. Thanks to the contributors who made this compilation possible, including, but not limited to olivers@physics.utoronto.ca, cpf@alchemy.ithaca.NY.US, glowboy@robot.nuceng.ufl.edu, jgh1@iucf.indiana.edu, p675cen@mpifr-bonn. mpg.de, ted@physics.Berkeley.EDU, Jeremy_Caplan@postoffice.brown.edu, baez@ucrmath.UCR.EDU, greason@ptdcs2.intel.com, dbd@utkux.utcc.utk.edu, roberts@alpha.brooks.af.mil, rev@NBSENH.BITNET, cotera@aspen.uml.edu, panetta@cithe503.cithep.caltech.edu, johncobb@emx.cc.utexas.edu, exunikh @exu.ericsson.se, bergervo@prl.philips.nl, aephraim@physics5.berkeley.edu, zowie@daedalus.stanford.edu, jean@sitka.triumf.ca, price@price.demon.co.uk, palmer@sfu.ca, Benjamin.J.Tilly@dartmouth.edu, jac@ds8.scri.fsu.edu, BLYTHE@BrandonU.CA, alec@phys.oxy.edu, gelfand@lamar.ColoState.EDU, lee@aries.yorku.ca ******************************************************************************** Item 5. The Nobel Prize for Physics (1901-1993) updated 15-OCT-1993 by SIC --------------------------------------- original by Scott I. Chase The following is a complete listing of Nobel Prize awards, from the first award in 1901. Prizes were not awarded in every year. The description following the names is an abbreviation of the official citation. 1901 Wilhelm Konrad Rontgen X-rays 1902 Hendrik Antoon Lorentz Magnetism in radiation phenomena Pieter Zeeman 1903 Antoine Henri Bequerel Spontaneous radioactivity Pierre Curie Marie Sklowdowska-Curie 1904 Lord Rayleigh Density of gases and (a.k.a. John William Strutt) discovery of argon 1905 Pilipp Eduard Anton von Lenard Cathode rays 1906 Joseph John Thomson Conduction of electricity by gases 1907 Albert Abraham Michelson Precision meteorological investigations 1908 Gabriel Lippman Reproducing colors photographically based on the phenomenon of interference 1909 Guglielmo Marconi Wireless telegraphy Carl Ferdinand Braun 1910 Johannes Diderik van der Waals Equation of state of fluids 1911 Wilhelm Wien Laws of radiation of heat 1912 Nils Gustaf Dalen Automatic gas flow regulators 1913 Heike Kamerlingh Onnes Matter at low temperature 1914 Max von Laue Crystal diffraction of X-rays 1915 William Henry Bragg X-ray analysis of crystal structure William Lawrence Bragg 1917 Charles Glover Barkla Characteristic X-ray spectra of elements 1918 Max Planck Energy quanta 1919 Johannes Stark Splitting of spectral lines in E fields 1920 Charles-Edouard Guillaume Anomalies in nickel steel alloys 1921 Albert Einstein Photoelectric Effect 1922 Niels Bohr Structure of atoms 1923 Robert Andrew Millikan Elementary charge of electricity 1924 Karl Manne Georg Siegbahn X-ray spectroscopy 1925 James Franck Impact of an electron upon an atom Gustav Hertz 1926 Jean Baptiste Perrin Sedimentation equilibrium 1927 Arthur Holly Compton Compton effect Charles Thomson Rees Wilson Invention of the Cloud chamber 1928 Owen Willans Richardson Thermionic phenomena, Richardson's Law 1929 Prince Louis-Victor de Broglie Wave nature of electrons 1930 Sir Chandrasekhara Venkata Raman Scattering of light, Raman effect 1932 Werner Heisenberg Quantum Mechanics 1933 Erwin Schrodinger Atomic theory Paul Adrien Maurice Dirac 1935 James Chadwick The neutron 1936 Victor Franz Hess Cosmic rays Carl D. Anderson The positron 1937 Clinton Joseph Davisson Crystal diffraction of electrons George Paget Thomson 1938 Enrico Fermi New radioactive elements 1939 Ernest Orlando Lawrence Invention of the Cyclotron 1943 Otto Stern Proton magnetic moment 1944 Isador Isaac Rabi Magnetic resonance in atomic nuclei 1945 Wolfgang Pauli The Exclusion principle 1946 Percy Williams Bridgman Production of extremely high pressures 1947 Sir Edward Victor Appleton Physics of the upper atmosphere 1948 Patrick Maynard Stuart Blackett Cosmic ray showers in cloud chambers 1949 Hideki Yukawa Prediction of Mesons 1950 Cecil Frank Powell Photographic emulsion for meson studies 1951 Sir John Douglas Cockroft Artificial acceleration of atomic Ernest Thomas Sinton Walton particles and transmutation of nuclei 1952 Felix Bloch Nuclear magnetic precision methods Edward Mills Purcell 1953 Frits Zernike Phase-contrast microscope 1954 Max Born Fundamental research in QM Walther Bothe Coincidence counters 1955 Willis Eugene Lamb Hydrogen fine structure Polykarp Kusch Electron magnetic moment 1956 William Shockley Transistors John Bardeen Walter Houser Brattain 1957 Chen Ning Yang Parity violation Tsung Dao Lee 1958 Pavel Aleksejevic Cerenkov Interpretation of the Cerenkov effect Il'ja Mickajlovic Frank Igor' Evgen'evic Tamm 1959 Emilio Gino Segre The Antiproton Owen Chamberlain 1960 Donald Arthur Glaser The Bubble Chamber 1961 Robert Hofstadter Electron scattering on nucleons Rudolf Ludwig Mossbauer Resonant absorption of photons 1962 Lev Davidovic Landau Theory of liquid helium 1963 Eugene P. Wigner Fundamental symmetry principles Maria Goeppert Mayer Nuclear shell structure J. Hans D. Jensen 1964 Charles H. Townes Maser-Laser principle Nikolai G. Basov Alexander M. Prochorov 1965 Sin-Itiro Tomonaga Quantum electrodynamics Julian Schwinger Richard P. Feynman 1966 Alfred Kastler Study of Hertzian resonance in atoms 1967 Hans Albrecht Bethe Energy production in stars 1968 Luis W. Alvarez Discovery of many particle resonances 1969 Murray Gell-Mann Quark model for particle classification 1970 Hannes Alfven Magneto-hydrodynamics in plasma physics Louis Neel Antiferromagnetism and ferromagnetism 1971 Dennis Gabor Principles of holography 1972 John Bardeen Theory of superconductivity Leon N. Cooper J. Robert Schrieffer 1973 Leo Esaki Tunneling in superconductors Ivar Giaever Brian D. Josephson Super-current through tunnel barriers 1974 Antony Hewish Discovery of pulsars Sir Martin Ryle Pioneering radioastronomy work 1975 Aage Bohr Structure of the atomic nucleus Ben Mottelson James Rainwater 1976 Burton Richter Discovery of the J/Psi particle Samual Chao Chung Ting 1977 Philip Warren Anderson Electronic structure of magnetic and Nevill Francis Mott disordered solids John Hasbrouck Van Vleck 1978 Pyotr Kapitsa Liquifaction of helium Arno A. Penzias Cosmic Microwave Background Radiation Robert W. Wilson 1979 Sheldon Glashow Electroweak Theory, especially Steven Weinberg weak neutral currents Abdus Salam 1980 James Cronin Discovery of CP violation in the Val Fitch asymmetric decay of neutral K-mesons 1981 Kai M. Seigbahn High resolution electron spectroscopy Nicolaas Bloembergen Laser spectroscopy Arthur L. Schawlow 1982 Kenneth G. Wilson Critical phenomena in phase transitions 1983 Subrahmanyan Chandrasekhar Evolution of stars William A. Fowler 1984 Carlo Rubbia Discovery of W,Z Simon van der Meer Stochastic cooling for colliders 1985 Klaus von Klitzing Discovery of quantum Hall effect 1986 Gerd Binning Scanning Tunneling Microscopy Heinrich Rohrer Ernst August Friedrich Ruska Electron microscopy 1987 Georg Bednorz High-temperature superconductivity Alex K. Muller 1988 Leon Max Lederman Discovery of the muon neutrino leading Melvin Schwartz to classification of particles in Jack Steinberger families 1989 Hans Georg Dehmelt Penning Trap for charged particles Wolfgang Paul Paul Trap for charged particles Norman F. Ramsey Control of atomic transitions by the separated oscillatory fields method 1990 Jerome Isaac Friedman Deep inelastic scattering experiments Henry Way Kendall leading to the discovery of quarks Richard Edward Taylor 1991 Pierre-Gilles de Gennes Order-disorder transitions in liquid crystals and polymers 1992 Georges Charpak Multiwire Proportional Chamber 1993 Russell A. Hulse Discovery of the first binary pulsar Joseph H. Taylor and subsequent tests of GR ******************************************************************************** END OF PART 1/4

---

The views and opinions stated within this web page are those of the author or authors which wrote them and may not reflect the views and opinions of the ISP or account user which hosts the web page. The opinions may or may not be those of the Chairman of The Skeptic Tank.

Return to The Skeptic Tank's main Index page.

E-Mail Fredric L. Rice / The Skeptic Tank